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Kriging/Gaussian Processes

Given:

A kernel κ(x, x′|θ) with parameters θ ∈ Rp

Input data X = {x1, . . . , xN}
Output data y = [y1, . . . , yN ]>

Test inputs X∗ = {x∗
1, . . . , x∗

M}
We can form kernel matrices:

K = κ(X, X|θ), K∗ = κ(X∗, X|θ),
K∗∗ = κ(X∗, X∗|θ)

which we use to obtain the normally distributed

posterior of y(X∗):

E [y(X∗)|y; θ] = K∗(K + σ2I)−1y
V [y(X∗)|y; θ] = K∗∗ − K∗(K + σ2I)−1K>

∗

Optimal parameters and noise variance maxi-

mize the log-marginal likelihood, log p(y|θ, σ):

−1
2
[
y>(K + σ2I)−1y + log

∣∣K + σ2I
∣∣ + N log(2π)

]
The offline training cost is O(N 3).

State of the Art Multi-Fidelity Modeling

Cokriging: (Myers, 1982; Goulard & Voltz, 1992; Karni-

adakis, 2016)

Use multi-output GPs with multi-fidelity data

Require the inversion of large kernel matrices

Sensitive to kernel parameter selection

Only linear mappings between fidelities

Autoregressive Estimators: (Kennedy & O’Hagan, 2000;

Perdikaris et al. 2016; Cutajar et al. 2017)

Map each level of fidelity to the next

Require smaller kernel matrix inversion

Induce limiting Markovian property

Assume known accuracy hierarchy of fidelities

May require noiseless and/or nested training data

NewHyperkriging Method
Research Question: How can we leverage data from a set of K low-fidelity

models to improve the accuracy and computational cost of training a high-fidelity

surrogate model?

Key Definitions

High-Fidelity model: highly accurate and expensive simulation

Low-Fidelity model: less accurate but cheaper simulation

Multi-Fidelity surrogate model: a data-driven model trained on both

scarce high-fidelity data and plentiful low-fidelity data.

Main idea: create a set of multi-fidelity features for the high-fidelity kriging

model:

φ1(x) =
[
x> hK(x) . . . h2(x)

]>

where h` is a data-driven surrogate model for fidelity-`. Then we choose a

kernel κ which acts on φ1:

Cov [y1(x), y1(x′)] = κ(φ1(x), φ1(x′)|θ1)
This defines a high-fidelity Kriging model. The features φ1 are created re-

cursively from surrogate models trained on φ2, . . . , φK:

φ`(x) =
[
φ`+1(x)
h`+1(x)

]
, φK(x) = x (base case)

Hence, each model h` uses information from levels `+1 throughK to make

predictions about level `. Further, only h1 needs to be a Kriging model,

which can alleviate computational cost to train h2 through hK.

Figure 1. Hyperkriging offline training process on three levels of fidelity. The surrogate

models are trained in the following order: h3, h2, then h1.

Numerical Experiment
To clearly illustrate the utility of the method, we con-

sider a simple one-dimensional test problem in which ap-

proximating the high-fidelity function requires a nonlinear

combination of all low-fidelity functions:

Function # of Data Points R2

f1(x) = sin(2πx) exp(−x) 10 1.000

f2(x) = sin(2πx) 100 0.638

f3(x) = exp(−x) 250 0.417

Table 1. Experiment details. R2 indicates the Pearson

correlation coefficient with the high-fidelity function.

Figure 2. Hyperkriging predictions compared with KOH

(Kennedy & O’Hagan, 2000), NARGP (Perdikaris et al.

2016), and single-fidelity Kriging (Rasmussen & Williams

et al. 2008). Shaded regions represent 95% confidence

intervals for the true function.

Method RMSE R2 MLL

Hyperkriging 2.294e-02 0.9866 10.6412

Kennedy O’Hagan 9.150e-02 0.8820 2.8686

NARGP 6.042e-02 0.9391 3.4994

Kriging 6.989e-02 0.8800 -3.4304

Table 2. Performance comparison model predictions at

250 linearly spaced test points across the input space.
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